首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29582篇
  免费   2998篇
  国内免费   1719篇
电工技术   2586篇
技术理论   2篇
综合类   2479篇
化学工业   3679篇
金属工艺   889篇
机械仪表   1543篇
建筑科学   2970篇
矿业工程   1288篇
能源动力   3794篇
轻工业   1245篇
水利工程   715篇
石油天然气   1801篇
武器工业   285篇
无线电   3962篇
一般工业技术   2165篇
冶金工业   1234篇
原子能技术   523篇
自动化技术   3139篇
  2024年   60篇
  2023年   489篇
  2022年   868篇
  2021年   1065篇
  2020年   1136篇
  2019年   983篇
  2018年   898篇
  2017年   1088篇
  2016年   1242篇
  2015年   1296篇
  2014年   2017篇
  2013年   1990篇
  2012年   2223篇
  2011年   2364篇
  2010年   1848篇
  2009年   1846篇
  2008年   1700篇
  2007年   1808篇
  2006年   1652篇
  2005年   1280篇
  2004年   1079篇
  2003年   943篇
  2002年   780篇
  2001年   669篇
  2000年   555篇
  1999年   448篇
  1998年   317篇
  1997年   274篇
  1996年   288篇
  1995年   215篇
  1994年   185篇
  1993年   119篇
  1992年   96篇
  1991年   103篇
  1990年   65篇
  1989年   63篇
  1988年   41篇
  1987年   38篇
  1986年   41篇
  1985年   26篇
  1984年   23篇
  1983年   18篇
  1982年   17篇
  1981年   15篇
  1979年   3篇
  1978年   3篇
  1959年   3篇
  1956年   2篇
  1955年   3篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
徐建军 《煤炭技术》2020,39(1):128-130
为了提高碎软煤层条带瓦斯抽采效率和效果,基于目前地面瓦斯抽采主要采用垂直井或从式井的方式抽采效果差、效率低的现状,通过理论和实验分析论证了穿岩层压裂改造煤储层的可行性,提出了在目标煤层顶板岩层中钻水平井,并通过垂直向下射孔以及采用泵送桥塞分段进行压裂的方式进行地面瓦斯抽采。试验结果表明:顶板分段压裂水平井单井产量高、高稳产期更长、产量衰减更慢;有效水平井段控制区域内瓦斯下降均匀,更有利于进行条带瓦斯抽采;相同投资条件下,采用水平井的方式瓦斯抽采效率和投入产出比更高。  相似文献   
72.
随着新型材料冶金技术的发展与进步,钛合金作为“崛起的第三代金属”已完全替代了铝镁合金和钢构件,成为航天飞行器上应用范围最广的材料之一。从某新研制航天飞行器外部结构件用钛合金材料的特性及切削特点入手,针对薄壁弱刚性钛合金结构件在实际加工过程中遇到的诸多难点,提出了相应的解决办法,并重新设计了零件工装。结果表明,改进措施不仅保证了零件质量,而且提高了零件加工效率,使单件零件的生产周期缩短了近10h。  相似文献   
73.
Tunneling nanotubes (TNTs) are recognized long membrane nanotubes connecting distance cells. In the last decade, growing evidence has shown that these subcellular structures mediate the specific transfer of cellular materials, pathogens, and electrical signals between cells. As intercellular bridges, they play a unique role in embryonic development, collective cell migration, injured cell recovery, cancer treatment resistance, and pathogen propagation. Although TNTs have been considered as potential drug targets for treatment, there is still a long way to go to translate the research findings into clinical practice. Herein, we emphasize the heterogeneous nature of TNTs by systemically summarizing the current knowledge on their morphology, structure, and biogenesis in different types of cells. Furthermore, we address the communication efficiency and biological outcomes of TNT-dependent transport related to diseases. Finally, we discuss the opportunities and challenges of TNTs as an exciting therapeutic approach by focusing on the development of efficient and safe drugs targeting TNTs.  相似文献   
74.
Hydrogen generation through solar-water splitting is expected to address the global energy crisis by providing a source for a safer and sustainable alternative fuel. Herein, we report a facile synthesis of Cu2O nanowires and show that the magnetic field could influence the nanowires’ distribution and alignment. Orientation of nanowires was observed to become more inclined towards the magnetic field lines as the values of full-width at half maximum decreased from 140° to 46.2° with the increase in the field strength. Crystallographic, morphological, optoelectronic, and photoelectrochemical properties of the constructed p-n homojunction were analyzed by using different characterization techniques. A high built-in potential of +0.93 V vs. RHE was observed for a 50 nm layer of n-Cu2O over p-Cu2O nanowires that resulted in a significantly high photocurrent density of −7.42 mA/cm2. The stability in the photoelectrochemical medium was maintained for 14 h, generating 20 mmol/cm2 of H2.  相似文献   
75.
This paper considers thermochemical recuperation (TCR) of waste-heat using natural gas reforming by steam and combustion products. Combustion products contain steam (H2O), carbon dioxide (CO2), and ballast nitrogen (N2). Because endothermic chemical reactions take place, methane steam-dry reforming creates new synthetic fuel that contains valuable combustion components: hydrogen (H2), carbon monoxide (CO), and unreformed methane (CH4). There are several advantages to performing TCR in the industrial furnaces: high energy efficiency, high regeneration rate (rate of waste-heat recovery), and low emission of greenhouse gases (CO2, NOx). As will be shown, the use of TCR is significantly increasing the efficiency of industrial furnaces – it has been observed that TCR is capable of reducing fuel consumption by nearly 25%. Additionally, increased energy efficiency has a beneficial effect on the environment as it leads to a reduction in greenhouse gas emissions.  相似文献   
76.
A concentrated solar absorber with finned phase change materials was experimentally studied using a Scheffler type parabolic dish concentrator. The absorber's inner surface was fixed with hollow cylindrical containers filled with phase change material (PCM) for heat transfer augmentation. The absorber's selected PCM was acetanilide (Melting point of 116 °C)—the cylindrical capsules protruding into the fluid side to create turbulence and mixing and acting as fins. The absorber surface temperature was observed to be about 130–150 °C during the outdoor tests while passing fluid through the absorber. The fluid flow rate varied from 60 to 100 kg/h during the outdoor experiments. The peak energy and exergy efficiency of parabolic dish collector (PDC) at the fluid flow rate of 80 kg/h with PCM integrated solar absorber was found to be about 67.88% and 6.96%, respectively. The integration of cylindrical PCM containers resulted in more heat transfer augmentation in the solar absorbers. The optimized solar absorber could be suitable for various applications like steam generation, biomass gasification, space heating, and hydrogen generation.  相似文献   
77.
In the electro-deoxidation process, carbon parasitic reaction (CO32- + 4e-=C + 3O2-) usually occurs when using carbon materials as the anode, which leads to increase of the carbon content in the final metal and decrease of the current efficiency of the process. The aim of this work is to reduce the negative effect of carbon parasitic reaction on the electrolysis process by adjusting anode current density. The results indicate that lower graphite anode area can achieve higher current density, which is helpful to increase the nucleation site of CO2 bubbles. Most of CO2 would be released from the anode instead of dissolution in the molten CaCl2 and reacting with O2- to form CO32-, thus decreasing the carbon parasitic reaction of the process. Furthermore, the results of the compared experiments show that when the anode area decreases from 172.78 to 4.99 cm2, CO2 concentration in the released gases increases significantly, the carbon mass content in the final metal product decreased from 1.09% to 0.13%, and the current efficiency increased from 6.65% to 36.50%. This study determined a suitable anode current density range for reducing carbon parasitic reaction and provides a valuable reference for the selection of the anode in the electrolysis process.  相似文献   
78.
Using simple and efficient methods to synthesize biological activated carbon catalysts (ACCs) with the decomposition of hydrogen iodide (HI) in the sulfur-iodine cycle as a typical reaction is urgently needed for the commercialization of hydrogen energy production and development. In this study, a series of ACCs with different specific surface areas (SSAs) and pore structures are prepared by comparing and controlling the changes in carbonization and activation methods of activated carbon (AC) preparation process. Hierarchical porous AC with larger SSA has higher HI decomposition efficiency. The representative samples H240H1h and H240C4h are hierarchical porous ACCs with 48.96% and 46.88% micropores, respectively, and have the highest catalytic activity in the entire series. The nitrogen adsorption and desorption curve is combined with pore size distribution data and analyzed using the capillary aggregation (Kelvin) and monolayer adsorption (Langmuir) theories. And ACC pore grading coefficient—which can improve data visualization—is introduced.  相似文献   
79.
Cell temperature and water content of the membrane have a significant effect on the performance of fuel cells. The current-power curve of the fuel cell has a maximum power point (MPP) that is needed to be tracked. This study presents a novel strategy based on a salp swarm algorithm (SSA) for extracting the maximum power of proton-exchange membrane fuel cell (PEMFC). At first, a new formula is derived to estimate the optimal voltage of PEMFC corresponding to MPP. Then the error between the estimated voltage at MPP and the actual terminal voltage of the fuel cell is fed to a proportional-integral-derivative controller (PID). The output of the PID controller tunes the duty cycle of a boost converter to maximize the harvested power from the PEMFC. SSA determines the optimal gains of PID. Sensitivity analysis is performed with the operating fuel cell at different cell temperature and water content of the membrane. The obtained results through the proposed strategy are compared with other programmed approaches of incremental resistance method, Fuzzy-Logic, grey antlion optimizer, wolf optimizer, and mine-blast algorithm. The obtained results demonstrated high reliability and efficiency of the proposed strategy in extracting the maximum power of the PEMFC.  相似文献   
80.
To develop an operating strategy for maximizing the energy efficiency of open-cathode proton exchange membrane fuel cells (OCPEMFCs), the present study investigates the effect of the fan speed on the stack performance and energy efficiency using a commercially available OCPEMFC system. The temperature, voltage, and current of the stack are monitored, and the energy efficiency is calculated at various stack power levels. The results of the system with a lab-developed controller are compared with the commercial system with a built-in controller. It is found that the fan speed should be minimum to reduce the auxiliary power consumption and that the stack should be efficiently heated to enhance the electrochemical reaction. In addition, it is noticed that the stack performance dramatically drops when the stack temperature is above 75 °C, due to the membrane dehydration. Overall, the results show that the stack temperature is an important indicator for controlling the fan speed for optimization of energy efficiency, and for stack powers of 50, 60, 70, and 80 W, the peak values of energy efficiencies are 38.0%, 38.3%, 38.5%, and 38.3% at the duty cycles of 0.2, 0.2, 0.25, and 0.3, respectively, which are 28–38% higher than the commercially available OCPEMFC system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号